Scaling and size effects in fatigue of micro- and nano-structured fcc metals

C. Eberl

Institute for Applied Materials, Microreliability Group

Motivation from modern applications
Scaling and size effects
Challenges in experimental mechanics
Fatigue in microsamples and thin film fatigue
Wrap-Up
Scaling effects

electric resistance \[R = \rho \frac{L}{A} \propto \ell^{-1} \]
\(\rho \) - material dependent resistivity

diffusion \[\tau = \frac{L^2}{2D} \propto \ell^2 \]
\(D \) - diffusion

friction \[\mu = \frac{F_{\text{tan g}}}{F_{\text{norm}}} \propto \ell^0 \]
Scaling Effect

\[R = S_{\text{spec}} \cdot \frac{l}{A} \]

\(S = \text{specific resistivity} \}
\(l = \text{conductor length} \}
\(A = \text{cross section} \}

\(\text{Mukral} \}
\(\text{Geometry} \)
Scaling Effect

\[R = S_{\text{spec}} \cdot \frac{l}{A} \]

Trivial but important

→ Geometric effects can easily be determined but need to be accounted for.
Scaling Effect + Size Effect

\[R = \frac{S_{\text{spec}}}{A} \sim S(l) \cdot \frac{A}{l} \]

\(S \) = specific resistivity \(M \) = metal \(L \) = conductor length \(A \) = cross section

Scaling Effect + Size Effect

\[R = S_{\text{spec}} \cdot \frac{l}{A} \sim S(l) \cdot \frac{1}{l} \]

Strong effects on materials property

→ Characteristic length of defects interferes e.g. with sample dimensions or microstructural length scales.

Mechanical properties: larger is weaker?

Galilei G., *Discorsi, e dimostrazioni matematiche, Intorno à due nuoue scienze, Attenenti alla Mecanica, & i Mouimenti Locali*, Bologna, Per gli HH. del Dozza, 1655
Mechanism based size effects – thin film fatigue

Stress Amplitude σ_a [MPa]

- 120
- 110
- 100
- 90
- 80
- 70
- 60
- 50
- 40
- 30
- 20
- 10
- 0

Film thickness [µm]

- 0.0
- 0.2
- 0.4
- 0.6
- 0.8
- 1.0
- 1.2
- 1.4
- 1.6
- 1.8

Schwaiger, Kraft, Acta 2001

3 µm Cu

G. P. Zhang et al., Phil. Mag. Let., 2003
Classical size effects \Rightarrow Fatigue at 20kHz

(a) $\phi 8 \times 10$ mm specimen (ultrasonic)

- Volume of high stress: 781 mm3
- Life time

(b) $\phi 7$ mm specimen (ultrasonic)

- Volume of high stress: 254 mm3

(c) $\phi 3$ mm specimen (ultrasonic)

- Volume of high stress: 33 mm3

High strength steel—Cracks nucleate at inclusions, Y. Furuya, Scripta Mat. 2008
Defect free vs. predeformed Mo crystals under compression

Defect free vs. predeformed Mo crystals under compression

Materials have a natural defect distribution - McDowell

→ Defect distribution, density or distance interfere with sample dimension.

Frequency effects
E.g. internal friction

Gremaud, 2001

Blind spot

Dislocation-phonon relaxation of segment L

Dislocations can not move

Hysteric IF background

Peaks of interaction with obstacles

Micro creep
Frequency effects
E.g. internal friction

- Frequency strongly influences active defect mechanisms
 - loading frequency interferes with characteristic frequency of defects
 - time-temperature superposition

Gremaud, 2001
Size, scaling and frequency effects

- Scaling effects – purely geometric

- Size effects can be
 - mechanism based
 - characteristic material property
 - e.g. depending on their defect distribution
 - processing parameters

- Frequency effects are strongly depending on active defect mechanisms
Institute for Applied Materials,
Microreliability Group

Evaluate Properties

- Bioinspired
- Metamaterials
- Thin Films and Alloys
- Carbon Allotropes
- Nano metals: e.g. nanoporous, -crystalline, and -twinned

Materials maturity

- Micromolded, Printed Materials
- Gradient Materials

Optimize Properties

- Coatings
Challenges for multiscale testing

Gianola und Eberl, JOM 2009
Challenges for multiscale testing

Load - bridging 13 orders of magnitude
Displacement – bridging 7 orders of magnitude

→ Multiscale testing needs to overcome these challenges
Non contact optical strain measurement

- 2D/3D Digital Image Correlation and Tracking (DICT)
 ca. 5 Frames per Second

- Digital Image Tracking (DIT)
 ca. 10,000 Lines per Second

- Interference Strain/Displacement Gage (ISDG)
 up to 10^6 measurements per Second

W.N. Sharpe (JHU)

S. Bundschuh, D. S. Gianola, C. Eberl
http://www.mathworks.com/matlabcentral/fileexchange/12413
Bridging dimensions by experiments

- **Microsample uniaxial fatigue**

- **Microsample multi-axial fatigue of Al, Cu, Ni**

- **Thin films: High throughput fatigue testing of Cu and Al**
Methods and Experiments for Small Scale Fatigue Testing

Uniaxial fatigue from Hz to kHz
Novel Custom Build for Small Scale Testing:
Tension, Compression and Bending under Static and Cyclic Loading

T. Kennerknecht

load cell
piezo actuator
sample
load cell

T. Kennerknecht
Novel Custom Build for Small Scale Testing: Tension, Compression and Bending under Static and Cyclic Loading

Specs:

- **Force:** 5, 50 N Load cell, mN Resolution
- **Strain rate:** $10^{-5} \ldots 10^1$ 1/s
- **Strain meas.:** optical, 2D, 1D, rel displacement up to 10 nm
- **Frequency:** ..190Hz, needs stiffer load cell
- **PID control:** displacement and load, at 200kHz through FPGA
- **Time Res.:** ~ns

C. Eberl - VHCF and UHCF in small volumes and metal thin films – novel experiments and modeling
Novel Custom Build Resonant Micro Fatigue Setup

Probe

Masse 30 gr.

Wegsensor

T. Kennerknecht
Novel Custom Build Resonant Micro Fatigue Setup

Specs:
- Force ampli.: up to 25N @1kHz
- Strain meas.: optical, 2D (static 5fps), 1D 10kHz, 0D:200kHz
- Frequency: 0.5..5kHz, higher frequency, smaller Piezo
- PID control: load amplitude, up to 750kHz by NI FPGA
- Time Res.: ~ns
Micro molded Al-Bronze @ 2.5 Hz – 2 kHz
Micro molded by Durime Buqesi-Ahmeti

(A) Loading direction
Top surface
Side surface

(B) 10 μm

130 μm thick
260 μm
1 mm

- 2.5 Hz, r = 0.1
- 25 Hz, r = 0.1
- 100 Hz, r = 0.1
- 868 Hz, r = -0.9
- 900 Hz, r = -0.9
- 1000 Hz, r = -0.9
- 1079 Hz, r = -0.89
- 2154 Hz, r = -0.98
- 2362 Hz, r = -0.98

Cycles to failure

T. Kennerknecht
Methods and Experiments for Small Scale Fatigue Testing

Multiaxial fatigue
Novel Custom Build Resonant Micro Fatigue Setup

Multiaxial Fatigue

- spring
- laser beam
- support
- clamp
- area detector
- sample
- piezo actuators

T. Straub
Custom Build Resonant Micro Fatigue Setup

Specs:
- Displ. meas.: Laser, Bending and Torsion 30kHz
- Frequency: 0.1..1kHz
- PID control: displ. amplitude, by NI FPGA
- Time Res.: ~ns
Damage formation in Ni-foils – 200 µm thickness

Crack nucleation needs certain microstructural compositions:
- Transmission of dislocations at GBs – GB character
- Extrusion formation across grains

T. Straub

Institute for Applied Materials,
Microreliability Group
Fatigue of thin films – high throughput experiments

S. Burger, A. Siegel, A. Ludwig, O. Kraft: KIT und RUB
Cu and Al thin film preparation
A. Siegel, A. Ludwig

etching process for structuring cantilever arrays

cantilever geometry

<table>
<thead>
<tr>
<th>grain size (µm)</th>
<th>Al</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘as deposited’</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>‘annealed’ 1 h @ 450 °C</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>‘on Ti’ seed layer</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

4” (100) oxidized Si wafer

Si substrate thickness 200 µm

thin films (thickness ~ 1 µm) deposited by magnetron sputtering
High Throughput Fatigue Setup

High Throughput Fatigue Setup

Lebensdauerkriterium:
80 % Intensität

Position Y [mm]
Position X [mm]

Damaged zone
Position for strain amplitude

1 mm

Lifetime Criterion

Intensity scans of Al thin film

Strain amplitude [%]

Position Y [mm]

Cycles to failure

0.00
0.0160
0.0180
0.0200
0.0210
0.0230
0.0240
0.0260
0.0280
0.0300
0.0320
0.0340
0.0360
0.0380
0.0400

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

0.00
10^8
10^9
10^10
10^11

Position for strain amplitude

Damaged zone
Lifetime is influenced by grain size, material and interlayer.

Basquin equation:

$$\varepsilon_a = \frac{\sigma'_f}{E} \cdot (2N_f)^b$$

- ε_a: strain amplitude
- σ'_f: fatigue strength
- E: Young’s modulus
- N_f: number of cycles to failure
- b: fatigue sensitivity exponent
Fatigue of thin films - Cu and Al

C. Eberl - Fatigue in small volumes and metal thin films
Novel experiments and modeling

S. Burger

Institute for Applied Materials, Microreliability Group
Phenomenological Lifetime Model

reflectivity depending on cycle number

transition of plot for fitting

limited exponential growth

Basquin type fit

adapted from Mitscherlich 1909

\[F = F_{\text{max}} \left(1 - \exp\left(-\frac{1}{N_{0.5} \cdot N_F}\right)\right)^n \]

with

\[N_{0.5} = K \cdot \varepsilon_a^q \]

\[F \] fraction of damage
\[F_{\text{max}} \] maximum fraction of damage
\[N_{0.5} \] half lifetime
\[N_F \] number of cycles for specific \(F \)
\(n \) growth mode
\(K \) fit parameter
\(q = 1/b \) inverse fatigue sensitivity exponent
\(\varepsilon_a \) strain amplitude

\[\varepsilon_a \] strain amplitude

adapted from Mitscherlich 1909
Wrap-Up – Size and scaling effects -

![Graph showing the relationship between stress amplitude (σ_a) and number of cycles (Zyklen)](image)

- **CuAl10Ni5Fe4**: 2.5 Hz, $R = 0.1$
- **CuAl10Ni5Fe4**: 25 Hz, $R = 0.1$
- **CuAl10Ni5Fe4**: 100 Hz, $R = 0.1$
- **CuAl10Ni5Fe4**: 900 Hz, $R = -0.9$
- **CuAl10Ni5Fe4**: 1000 Hz, $R = -0.9$
- **CuAl10Ni5Fe4**: 2000 Hz, $R = -1$
- **Cu thin film**: 566 Hz, $R = -1$
- **Cu bulk [Thompson et al.]**
- **Cu Biegung Überkritische Amplitude 900 Hz, R = -1**
- **Cu Multiaxial Überkritische Amplitude 900 Hz, R = -1**
- **Cu Torsion Überkritische Amplitude 900 Hz, R = -1**
- **Cu Biegung Subkritische Amplitude 900 Hz, R = -1**
• Scaling effects – purely geometric

• Size effects can be
 • mechanism based
 → characteristic material property
 • e.g. depending on their defect distribution
 → processing parameters

• Frequency effects are strongly depending on active defect mechanisms
Acknowledgement

- DFG for financial support SFB499 /2007 /2010 /T5 EB362/3, EB362/4 SPP1466
- Prof. O. Kraft (KIT, Germany)

- Dr. Durime Buqesi-Ahmeti (KIT, Germany)
- Prof. D. S. Gianola (University of Philadelphia, USA)
- Prof. K. J. Hemker (Johns Hopkins University, Baltimore)
- Prof. A. Ludwig (Ruhr Universität, Bochum, Germany)
- Prof. W. N. Sharpe (Johns Hopkins University, Baltimore)
- Prof. M. Wilhelm (KIT, Germany)
Acknowledgement

- DFG for financial support SFB499 /2007 /2010 /T5 EB362/3, EB362/4 SPP1466